Local voting of weak classifiers
نویسندگان
چکیده
Many data mining problems involve an investigation of relationships between features in heterogeneous datasets, where different learning algorithms can be more appropriate for different regions. We propose herein a technique of localized voting of weak classifiers. This technique identifies local regions which have similar characteristics and then uses the votes of each local expert to describe the relationship between the data characteristics and the target class. We performed a comparison with other well known combining methods on standard benchmark datasets and the accuracy of the proposed method was greater.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملRecognition of medication information from discharge summaries using ensembles of classifiers
BACKGROUND Extraction of clinical information such as medications or problems from clinical text is an important task of clinical natural language processing (NLP). Rule-based methods are often used in clinical NLP systems because they are easy to adapt and customize. Recently, supervised machine learning methods have proven to be effective in clinical NLP as well. However, combining different ...
متن کاملInducing Interpretable Voting Classifiers without Trading Accuracy for Simplicity: Theoretical Results, Approximation Algorithms
Recent advances in the study of voting classification algorithms have brought empirical and theoretical results clearly showing the discrimination power of ensemble classifiers. It has been previously argued that the search of this classification power in the design of the algorithms has marginalized the need to obtain interpretable classifiers. Therefore, the question of whether one might have...
متن کاملA Voting-Based Sequential Pattern Recognition Method
We propose a novel method for recognizing sequential patterns such as motion trajectory of biological objects (i.e., cells, organelle, protein molecules, etc.), human behavior motion, and meteorological data. In the proposed method, a local classifier is prepared for every point (or timing or frame) and then the whole pattern is recognized by majority voting of the recognition results of the lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- KES Journal
دوره 9 شماره
صفحات -
تاریخ انتشار 2005